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Abstract

Meta-learning (ML) has emerged as a promising learning
method under resource constraints such as few-shot learn-
ing. ML approaches typically propose a methodology to learn
generalizable models. In this work-in-progress paper, we put
the recent ML approaches to a stress test to discover their lim-
itations. Precisely, we measure the performance of ML ap-
proaches for few-shot learning against increasing task com-
plexity. Our results show a quick degradation in the perfor-
mance of initialization strategies for ML (MAML, TAML,
and MetaSGD), while surprisingly, approaches that use an
optimization strategy (MetaLSTM) perform significantly bet-
ter. We further demonstrate the effectiveness of an optimiza-
tion strategy for ML (MetaLSTM++) trained in a MAML
manner over a pure optimization strategy. Our experiments
also show that the optimization strategies for ML achieve
higher transferability from simple to complex tasks.

Introduction

Rapidly learning new skills from limited experience is a
fundamental trait of human intelligence. Replicating sim-
ilar capabilities in deep neural networks is a challenging
task. Meta-learning (ML) approaches have emerged as a
promising direction in this context, facilitating learning from
a limited amount of labeled training data (also referred to
as the few-shot learning). They can be broadly classified
into initialization and optimization strategies. Initialization
strategies such as Model Agnostic Meta-learning (MAML)
(Finn, Abbeel, and Levine 2017), Meta Stochastic Gra-
dient Descent (MetaSGD)(Li et al. 2017), Task Agnostic
Meta-learning (TAML) (Jamal and Qi 2019) learn an op-
timal model initialization that swiftly adapts to new tasks
with limited training data. Optimization strategies such as
Learn2Learn (Andrychowicz et al. 2016), MetaLSTM (Ravi
and Larochelle 2017) learn parametric optimizers that accel-
erate the adaptation of a model to new tasks. Though the two
approaches have the common objective of enforcing gener-
alization to unseen tasks, the difference in their methodology
presents a diverse set of merits and caveats.

Initialization methods learn an optimal prior on the model
parameters through the experience gained across various
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tasks. The strategies define the optimal prior to be equally
close to the individual training tasks’ optimal parameters.
This helps the model to quickly adapt to unseen tasks from
the same distribution. MAML learns the optimal prior by as-
suming that a model quickly learns unseen tasks with sparse
data if it is trained and tested under similar circumstances
(Vinyals et al. 2016). Literature suggests that the optimal
prior learned by MAML may still be biased towards some
tasks (Jamal and Qi 2019). TAML overcomes the bias by
explicitly minimizing the inequality in the optimally initial-
ized model performance across a batch of tasks.

However, as the task complexity increases, finding an
optimal prior becomes challenging. Thus, though gradient
descent takes off from a good initialization (better than
random), attaining good performance also depends on the
model’s ability to traverse the loss surface. A good initializa-
tion alone is insufficient. Our experiments confirm the degra-
dation in the performance of these models as the complexity
of the tasks increases.

The optimization strategy MetaLSTM (Ravi and
Larochelle 2017), learns recurrent parametric optimizer
capable of capturing both task-specific and agnostic knowl-
edge. The learned optimizer mimics the gradient-based
optimization of the base model. The parametric optimizer
uses the current base model’s loss and gradients to output
the model parameters for the next iteration during the
adaptation process. Thus, the optimizer can be viewed
as employing dynamic learning rates dependent on the
model’s parameters and task data, unlike MetaSGD that
only considers the former dependence.

However, optimization strategies have the overhead of
learning additional parameters and have limited scalability
(Finn, Abbeel, and Levine 2017; Li et al. 2017). Coordinate-
wise sharing of the optimizer’s parameters across the base
model’s parameters (Andrychowicz et al. 2016; Ravi and
Larochelle 2017) reduces the learning overhead.

Initialization approaches have achieved promising results
on sparse data ML settings. However. their capability on in-
creasingly complex tasks has not been studied. In this work-
in-progress paper, we conduct a stress test on initialization
and optimization ML strategies against increasing task com-
plexity. We also combine the two approaches to learn a para-
metric meta-optimizer MetaLSTM++, a version of Metal.-
STM trained in the MAML manner. We show that Met-



aLSTM++ achieves significantly better performance with
fewer adaptation steps on simple and complex tasks. Fur-
ther, motivated by human learning tactics - where experi-
ence gained from simple tasks helps to learn challenging
tasks gradually- we also examine the transferability of these
strategies from simple to complex tasks and vice versa.

Methodology
Problem Formulation and Notations

Given a principal dataset D and associated distribution of
tasks P(7), ML techniques create partitions - meta-sets
Dmeta—train’ Dmeta—validation and Dmeta—test for training
the model, tuning the hyperparameters and evaluating the
performance. Each meta-set is a collection of mutually ex-
clusive episodes of tasks drawn from the distribution P (7))
and each task 7; is associated with a dataset D; comprised
of disjoint sets {D!", D*s*}. Each task is an N-way K-shot
learning problem. ML techniques aim to learn an accurate
base model f parameterized by 6 for an unseen task 7; when
fine-tuned with few examples D!" of the task.

MAML uses a nested iterative process to learn the task-
agnostic optimal initialization 6*. In the inner iterations rep-
resenting the task adaptation steps, 6* is separately fine-
tuned for each meta-training task 7; using D" to obtain 6;
through gradient descent on the loss £!". Specifically, 6; is
initialized as 6* and updated using 6; < 6, —aVg, LI"(fo,).
In the outer loop, the meta optimization is performed over 6*
using the loss £1°** computed with the task adapted model
parameters 6; on held-out dataset D!5*. Specifically, during
meta-optimization 0% < 0% — BV 3" pry) LI (fo,)-

MetaSGD improves upon MAML by learning parame-
ter specific learning rates o in addition to the optimal ini-
tialization in a similar nested iterative procedure. Meta-
optimization is performed on #* and « in the outer loop
using the loss L' computed on held-out dataset Di¢st,
Specifically, during meta-optimization (6*, ) « (0*, ) —
BV (0« 0y 27 by L1 (fo,)- Learning dynamic learning
rates for each parameter of a model makes MetaSGD faster
and more generalizable than MAML. A single adaptation
step is sufficient to adjust the model towards a new task.
However the dependence of the learning rate only on model
parameters limits the capability of MetaSGD.

TAML aims to reduce the bias of the optimal initializa-
tion, learned through MAML, towards any task by explic-
itly minimizing the inequality among the performances of a
batch’s tasks. TAML uses statistical measures like the Theil
index, Atkinson index, Generalized entropy index, and Gini
coefficient to estimate the inequality among tasks’ perfor-
mances. In this work, we use the Theil index owing to the
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measuring the inequality among the performances of the
tasks in a batch, where B is number of tasks in a batch, ££¢5!
is loss of task 7; on held-out dataset D:** and L£'**" is the
average test loss of a batch of tasks. For few-shot learning,
TAML proposes entropy minimization to preclude the bias

1
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Figure 1: Oscillatory behaviour of MetaLSTM (A) as com-
pared to MetaLSTM++ (B).

of * towards any task 7; by maximizing the entropy of the
labels predicted by fp+ and minimizing the entropy of the
labels predicted by adapted model fp,. This is equivalent to
a maximum entropy prior over 8* such that the initialized
model is not biased to any task.

MetaLSTM learns an optimizer M parametrized by ¢ to
supervise the optimization process of the base model (fy).
The parametric optimizer is an LSTM, which is inherently
capable of performing bi-level learning due to its architec-
ture. During adaptation of fy on D!", the parametric opti-
mizer M takes meta information characterized by current
loss £!" and gradients Vy, (L!") as input and outputs the
next set of parameters 6;. Internally, the cell state of M cor-
responds to 6, and the cell state update in M resembles a
learned and controlled gradient update as the emphasis on
the previous parameters and the current update is regulated
by the learned forget and input gates respectively. While
adapting fp to D!", meta-information about the trajectory
on the loss surface across the adaptation steps is captured
in the hidden states of M, representing the task-specific in-
formation. During meta-optimization, ¢ is updated based on
the loss L£15* of task computed on held-out dataset D! to
garner the common knowledge across tasks.

MetaLSTM++ A caveat of MetaLSTM is the sequential
update to the parametric optimizer M after each adaptation
task. As a result, the optimization strategy traverses the loss
surface in an ordered sequence of task specific optima. This
leads to a longer and oscillatory optimization trajectory as
shown in Figure 1 and bias of M towards the final task. We
propose to overcome this bottleneck by learning M accord-
ing to the training procedure of initialization ML strategies,
termed as MetaLSTM++. Unlike the MetaLSTM, the M of
MetaLSTM++ is updated based on the average test loss of
a task batch. This is intuitive as a batch of tasks may better
approximate the data distribution, instead of a single task.
The batch update on M makes the optimization trajectory
smooth, short, and robust to task order (Figure 1).

Experiments and Results

The ML approaches are benchmarked using the popular
Omniglot dataset (Lake, Salakhutdinov, and Tenenbaum
2015). We consider this dataset owing to its simplicity and
show that the performance of ML strategies on complex set-
tings has not saturated even on this dataset. We follow the



Test Accuracy (20-Way)
Model 1 Shot 5-Shot

MAML* 9193 £0.72 97.65 +£0.20
MetaSGD* 94.58 £0.59 97.79 +0.23
TAML (Theil Index)*  92.25 £0.70 95.14 +0.87
MetaLSTM* 90.63 +£0.83 97.11 £0.24

MetaLSTM++ (Ours)  96.50 + 0.42 98.41 £+ 0.31

Table 1: Few shot classification performance of ML algo-
rithms on the Omniglot dataset. The £ represents the 95%
confidence interval across 300 tasks. All the algorithms are
rerun (denoted by *) on the same split for a fair comparison.

standard split (1200 : 423) of the dataset keeping 220 classes
from the meta-training split to tune the models’ hyperparam-
eters. The images are downsampled to 28 x28. We use the
same architecture as in (Finn, Abbeel, and Levine 2017) for
the base model. We use a two-layer LSTM following (Ravi
and Larochelle 2017) for the parametric optimizer.

The hyper-parameters for each ML approach have been
fine-tuned for each complexity setting separately for a fair
comparison. We find optimal hyper-parameters by perform-
ing a grid search over 30 different configurations for 5000
iterations. The search interval for all strategies is the same.
The number of adaptation steps range within [2% — 26], the
meta and base learning rates follow log uniform distribution
in the ranges [le™* — 1] and [le™* — 1e~?| respectively.
For TAML (Theil), A also follows a log uniform distribution
over the range of [16*2 — 1]. The meta batch size was var-
ied among 4, 8, 16, and 32. The final model was trained for
20000 iterations using the optimal set of hyper-parameters.
Early stopping was employed if no improvement was ob-
served for 2500 steps. Cross-entropy is the loss function
used in all the models.

We verified our implementation of all the ML approaches
on the train-test split for the 20 way 1 and 5 shot settings.
The results reported in Table 1 are consistent with the find-
ings in the existing literature. It is evident from the results
that MetaLSTM++ outperforms the state of the art meta-
learning approaches in both 1 and 5 shot settings, thus show-
ing the promise of combining the initialization and the opti-
mization strategies for ML.

Increasing Task Complexity

We use the most challenging few-shot learning setting,
the one-shot setting, for the next set of experiments. Fur-
thermore, increasingly challenging learning tasks are de-
signed by increasing the number of classes. In particular,
we consider 20, 40, 60, 80, 100, 150, 175, and 200 classes.
This challenging setting was never studied before. Figure
2 shows the results for MAML, TAML, MetaSGD, Metal-
STM, and MetaLSTM++ as the number of ways in a task
increases. The most salient observation is the rapid decrease
in MAML, TAML, and MetaSGD performances against in-
creasingly challenging learning tasks. Further, an acceler-
ated fall in their performance is witnessed when the num-
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Figure 2: Accuracy of ML strategies w.r.t the increase in the
number of ways in a task. The confidence interval is 99.9%.

ber of ways in a task rises beyond 150. Despite the exhaus-
tive hyperparameter search and finetuning, the initialization
based approaches saturate at accuracies close to zero for 175
and 200 way tasks. This indicates that an optimal initializa-
tion alone is insufficient for the model to perform well on
complex tasks. A justification for this behavior is that the
optimal parameters for the diverse tasks may lie far from
each other, so finding an initialization that lies in the proxim-
ity of all tasks may be difficult. Among initialization based
methods, MetaSGD is comparatively robust to the increas-
ingly complex tasks. A possible explanation for this could
be that MetaSGD learns parameter adaptive learning rates in
addition to the optimal initialization, which helps the model
traverse the loss surface to some extent while meta-testing.

MetaLSTM and MetaLSTM++, on the contrary, exhibit
only a marginal decline in performance despite the increas-
ing task complexity. This indicates that the parametric opti-
mizers can learn the loss surface’s generic dynamics to assist
the model to approach the optima, even for complex tasks. It
is also evident that MetaLSTM++ consistently outperforms
all ML approaches, indicating that the parametric optimizer
trained according to the initialization strategies has the edge
over pure optimization and initialization strategies.

Transferability across Complexity

The primary goal of ML approaches is to learn from ex-
perience a prior that generalizes well. We investigate the
generalizability of ML approaches on complex tasks, using
prior learned from simpler tasks. Specifically, we meta-train
a model on a 40-way 5-shot setting and meta-test it on a
40-way 1-shot setting. A 5-shot learning task is less chal-
lenging than a 1-shot task. We observe a performance drop
across all ML strategies as expected, as illustrated in Fig-
ure 3(A). However, the critical observation is that initial-
ization strategies - MAML, MetaSGD, and TAML experi-
ence a substantial performance reduction, indicating that op-
timal initialization obtained for a model in a simple setting is
not adequately generalizable to a complex setting. However,
MetaLSTM and MetaLSTM++ show lesser performance re-
duction, confirming the generalizability of a parametric opti-
mizer from simple to complex settings. MetaLSTM++ con-
sistently outperforms other approaches. We also investigate
the reverse transferability of ML models from complex to
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Figure 3: Transferability of ML approaches from (a) sim-
ple to complex tasks (40-way 5-shot to 40-way 1-shot) (b)
complex to simple tasks (40-way 1-shot to 40-way 5-shot)
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Figure 4: Ablation studies across: (a) Adaptation steps (b)
Initialization (radius = test accuracy across 300 tasks)

simpler tasks. In particular, we train and test a meta-model
on a 40-way 1-shot and 5-shot tasks respectively. As the
model sees more information during the meta-test time, we
expect all the models’ performance to increase. The results
from Figure 3(B) show that the increase in the performance
of MAML, TAML, and MetaSGD is higher than MetaLSTM
and MetaLSTM++. However, MetaLSTM++ still achieves
higher overall accuracy across both scenarios.

To rule out the inadequacy of the adaptation steps dur-
ing meta-testing, we observe the behavior of 40-way 1-shot
models against an increasing number of adaptation steps
during meta-testing on 40-way 5 shot tasks. The test accura-
cies are averaged across 300 tasks. We observe from Figure
4 (a) that initialization methods and MetaLSTM++ require
less adaptation on the test data to achieve peak performance,
but MetaLSTM requires significantly more adaptation steps.
We also notice that MetaLSTM++ performs better than other
meta-learning strategies throughout the scenario (achieves
higher accuracy in a lesser number of adaptation steps).

Ablation on the Initialization

MetaLSTM and MetaLSTM++ also implicitly learn a good
initialization for the base learner. We study the effect of de-
coupling the learned initialization from the parametric op-
timizer in a 20-way 5-shot setting. In the first experiment,
we switch the MetaLSTM and MetaLSTM++ optimizers
with Adam while retaining their initializations. This setting
would be comparable to MAML. We observe from Figure
4 (b) that a model initialized with MetaLSTM cell state and
adapted with Adam performs significantly poorly at the test
time, indicating that the initialization learned by MetaLSTM

fo  A\OPt: MetalSTM
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is substandard. We also observe that MetaLSTM++ learns
a better initialization than MetaLSTM owing to its meta-
training strategy; however, MAML learns the most desir-
able initialization. In the second experiment, we investigate
the model’s performance when initialized by MAML and
guided by MetaLSTM and MetaLSTM++ optimizers. The
results from Figure 4 (b) show no substantial increase in the
performance, indicating that the learned parametric optimiz-
ers can guide the model to superior performance even with
substandard initialization (MetaLSTM and MetaLSTM++).

Conclusion

Meta-learning approaches for few-shot learning have shown
promising results on simpler tasks of the Omniglot bench-
marking dataset. In this paper, we conduct a stress test on
these approaches using more challenging one-shot learning
tasks from the same dataset. We observe a sharp drop in the
accuracy (close to 0!) for MAML, TAML, and MetaSGD
with a significant increase in the number of classes (175).
Surprisingly, optimization strategies like MetaLSTM and
the proposed variant MetaLSTM++ continue to maintain ac-
curacies above 80% even with the challenging task of 200-
way 1-shot learning. The experiments on transferability of
meta-models from simpler to complex tasks (and vice versa)
also suggest the effectiveness of optimization strategies over
initialization. While the results show the limitations of and
motivate future research on pure initialization strategies for
meta-learning, it also warrants the study into the causes for
optimization strategies’ effectiveness.
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