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CHAPTER
ONE

INTRODUCTION

Transition from one steady state to another occur in many complex systems, such as financial markets,
human societies, climate systems and various other domains. Transitions may be abrupt and irreversible
(i.e., catastrophic), or smooth and reversible (i.e., non-catastrophic), and can occur due to gradual external
forcing or random fluctuations in the system. In such scenarios, on crossing a threshold (known as a tipping
or bifurcation point), structural changes occur in the underlying system. This is often termed a critical
transition, prior to which the system’s return to an equilibrium slows down - a phenomenon known as
critical slowing down (CSD) [1]-[2]. The phenomenon of CSD is related to the fact that the real part
of the dominant eigenvalue of the system goes to zero at the bifurcation point. In all such cases, where
the dominant eigenvalue approaches zero close to the tipping point irrespective of catastrophic or non-
catastrophic transitions, the phenomenon of CSD persists, and there exist statistical indicators that forewarn
the vicinity of a tipping point [3]-[5]. Understanding the causes of sudden transitions and forecasting them
using statistical indicators have recently emerged as an important area of research due to the management
implications of preventing catastrophes in natural systems

The traditional approach of forecasting a critical transition relies on CSD based indicators such as variance,
autocorrelation, and skewness showing an increasing trend before a transition. In this work, we take a
different direction, and propose to use machine learning for anticipating transitions in complex dynamical
systems.




CHAPTER
TWO

MACHINE LEARNING

Maintaining a level of abstraction, human intelligence, and decision-making can be understood as analogies
to mathematical functions . The inference that we make is essentially a function that processes a set of input
sensory signals, mapping it to some meaningful target domain. For example, when one infers "that is an
apple", it can be understood as a function that maps visual sensory signals to a known space of objects.
What constitutes knowledge and intelligence then is learning such functions, and human beings learn from
experience.

On similar lines, one way to enable machines to make inferences is to model the task using a parameterized
function that maps data in some input space to a desired target space. Machine learning then refers to
finding the optimal parameters for the function that best explains the data for the task at hand. Utilizing
samples of data in the input and target spaces, one can learn the function that maps the input domain to the
target domain. This enables performing inference on a new/unseen data point. This is popularly known as
supervised learning and constitutes the base for the functioning of EWSNet.

Deep Learning

Deep neural networks are essentially parameterized functions, proven to be universal function approxima-
tors. Efficiently learning from data using classical machine learning models often required handcrafting
efficient feature representations for the data. The advent of convolutional neural networks enabled stack-
ing multiple neural network layers and going deep, to automatically extract features that are important for
learning, from raw input data.

In their original form, neural networks were built to process IID data samples in fixed dimensional spaces.
On the contrary, most real-life data such as time-series, text, audio, video, etc., are sequential in nature
and of variable length. To be able to process such sequential data and capture the inherent dependence
that is present, novel neural network architectures have been proposed, the most popular among them being
recurrent neural networks (RNN). RNNs process sequential data in an iterative manner, keeping a memory
of data at the previous time steps. However, capturing long-term dependencies is difficult with RNNs. An
LSTM is a sophisticated RNN architecture that addresses this issue by enabling the addition and deletion of
information to a common memory that is propagated across time steps.




CHAPTER
THREE

EWSNET

EWSNet is a deep neural network, a parameterized function that employs an LSTM to capture long-term
dependencies in the sequential time series data, in addition to a fully convolutional submodule that helps
automatically extract complex non-linearities from the data, requisite to learn the characteristics indicative
of a future transition.

EWSNet can classify catastrophic and non-catastrophic and no transitions in raw time series data learning
fundamental properties that characterize transitions along with critical slowing down which helps it to
distinguish a no transition from the other two variants. EWSNet makes none but one pressumtion that the
test data must belong to a similar distribution as that of training data. By a similar distribution, it is meant
that test data have critical behavior (bifurcations) similar to underlying bifurcations of time series data
that are deployed for training. The present EWSNet is not specific to models on which it is trained but
critical behavior specific. There is always a choice to update and retrain EWSNet continuously to cover an
exhaustive space of such critical behaviors under each transition label increase robustness of its prediction
and get rid of this assumption.
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Fig. 1: EWSNet Architecture




CHAPTER
FOUR

DATA GENERATION

We generate stochastic time series that serve as training data pertaining to the 3 labels (catastrophic, non-
catastrophic and no transition). Time series are obtained by simulating 9 most well established models
that depict the above transitions in diverse systems such as ecological, climatic and systems biology. We
consider data only prior to tipping to train the EWSNet. The normal form theory confirms that at the
vicinity of a tipping, dynamics associated with a specific bifurcation is similar and not model dependent.
Yet we train with diverse non-linear models for variance in the training set that adds to the robustness of
the EWSNet. In the process, we first obtain the deterministic tipping by plotting the bifurcation diagram in
XPPAUT [6] . We also vary parameters apart from the control (bifurcation parameter) wherever possible.
It is to be noted that an extra parameter is varied in models [1],[3],[6],[7],[9] only after reconfirming that
the afforementioned bifurcation persist within the range by means of a two parameter bifurcation diagram
plotted in XPPAUT. This aids to more variability across timeseries. On varying an extra parameters in the
above models , the tipping points may be altered, we note the minimum value of the deterministic tipping
for the range of parameters. Further, to ensure the tipping is never crossed on interaction of noise and
nonlinearity especially for highly correlated noise, we choose the control parameter value quite prior to
tipping and solve the system using Euler Muryama method for 400 time steps within this range. For each
time step, we solve the system until a stationary state is reached (t=1000, dt=0.01). As we move forward
in time t = 1, 2....400, the control parameter is gradually changed, while all other parameters are generally
fixed. If any other parameter is varying as in models [1],[3],[6],[7],[9], the parameter value is picked up
randomly for each simulation which remains fixed for all time steps and varies only across time series.

0.1 million time series, each for Dataset-W and Dataset-C are generated with the training data majorly com-
mon in both sets. However, in Dataset-C, we train with an additional number of time series by simulating
models for kK = —0.2 and 0.2, while the corresponding test data contain time series generated from the
underlying models for high amplitude autocorrelation coefficient values [k = —0.64, 0.64, —0.8,0.8]. Time
series for both training and testing are generated in equal proportions for all the 3 labels. Model [1]-[5] cor-
respond to the label critical (catastrophic) transition, [6]-[8] replicate smooth or gradual (non-catastrophic)
transition and model 9 represent no transitions. All the chosen parameter values for model [1]-[9] are taken
from published literature which are cited in the main text and supplementary. Variation in parameters in
order to add variability to the datasets are done only after plotting both one-parameter and two-parameter
bifurcations.

The red and green in each figure represents the deterministic stable and unstable states respectively.

We explicitly explain the data generation process for modell. The deterministic dynamics of modell can be
depicted by the differential equation:
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Here r = 1 represents the maximum growth rate, k € [8, 10] is the carrying capacity and b = 1 is the half
saturation constant. c is the bifurcation parameter which is varied in the range 1-3 (Fig. 1). Time series
generated by simulating model 1 correspond to the label catastrophic transition. In generating the stochastic
time series, the parameters r,b are fixed while k takes a uniform random number in the range [8,10] in
order to add variability across time series. This is done by confirming that the saddle node bifurcation
persists with the help of a two parameter bifurcation (Fig. 2) in the above range for c for the given k value.
The deterministic bifurcation point is ¢=2.13 for k=8 and c=2.6 for k=10. For generating time series, we
simulate the model for 400 time steps for c=1-1.9 prior to the minimum tipping. This also allows for
variance in dataset and reduce bias if any, as pre-transition time series that are used to train the EWSNET
are at varying distances from the tipping. Stochastic time series are generated by adding the multiplicative
noise component to the deterministic skeleton (x = 0 for Dataset-W and x = 0 and 0.2 for training data
in Dataset-C and x = 0.64,—0.64,0.8,—0.8 for test set). Only 20% of the training data for Dataset-C are
generated by setting x = —0.2 and 0.2. Bifurcation embedded time series for all the other models are
plotted (Fig. 3-Fig. 10).

() Model [1] (K=8) b) Model [1] (K=10)
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Fig. 1: Stochastic time series embedded over bifurcation diagram: One parameter bifurcation diagram
for model [1] for K = 8 and K = 10 respectively for the bifurcation parameter ¢ (maximum grazing rate)
varying in the range 1 — 3. Other parameters are » = 1 and b = 1. The shaded region mark the pre-transition
time series used for training the EWSNEget.
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Fig. 2: Phase diagram of the overharvesting model in (X, c)- plane: The shaded region represents bista-
bility and rest is monostable. The curve separating the monostable region from the bistable region is a
saddle-node bifurcation curve. Other parameter values are r = 1 and b = 1.
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Fig. 3: Stochastic time series embedded over bifurcation diagram:One parameter bifurcation diagram
for model [2] for the bifurcation parameter ¢ (maximum grazing rate) varying in the range 1 — 5. Other
parameter is K = 11. The shaded region mark the pre-transition time series used for training the EWSNet.
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(a) Model [3] (s = 0.05) (b) Model [3] (n; = 0.1)
0.35 0.41 0.47 0.53 0.59 0.65 0.35 0.41 0.47 0.53 0.59 0.65
12 X X X 5 X X X N
1 1
1
10 1 4
. 1
1 3
~ 6 ~
2 E
4 E
24 i
0 : ! : : 0+ . | . .
0 200 400 600 800 1000 0 200 400 600 800 1000
Time Time

Fig. 4: Stochastic time series embedded over bifurcation diagram: One parameter bifurcation diagram
for model [3] for z; = 0.05 and w1y = 0.1 respectively for the bifurcation parameter yp (predator mortality
rate) varying in the range 0.35 — 0.65. Other parameters are b = 1, ¢ = 1, ug = 0.01. The shaded region
mark the pre-transition time series used for training the EWSNet.
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Fig. 5: Stochastic time series embedded over bifurcation diagram:One parameter bifurcation diagram
for model [4] for the bifurcation parameter ¢ (maximum transcription rate) varying in the range 0 — 3. Other
parameter is » = 0.1. The shaded region mark the pre-transition time series used for training the EWSNet.
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Fig. 6: Stochastic time series embedded over bifurcation diagram:One parameter bifurcation diagram
for model [5] for the bifurcation parameter p (relative intensity of solar radiation) varying in the range
0.5 — 2. Other parameters are a = 2.81, b = 0.009, ¢ = 1.5 x 108, ¢ = 0.69, Iy = 0.03, 0 = 1.251 x 1072,
The density T represent temperature in Kelvin. The shaded region mark the pre-transition time series used
for training the EWSNet.

(a) Model [6] (K=10) (b) Model [6] (K=15)
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Fig. 7: Stochastic time series embedded over bifurcation diagram: One parameter bifurcation diagram
for model [6] for K = 10 and K = 15 respectively for the bifurcation parameter ¢ (maximum grazing rate)
varying in the range 0 — 2. Other parameter is 7 = 1. The shaded region mark the pre-transition time series
used for training the EWSNet.
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(a) Model [7] (K=8) (b) Model [7] (K=10)
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Fig. 8: Stochastic time series embedded over bifurcation diagram: One parameter bifurcation diagram
for model [7] for K = 8 and K = 10 respectively for the bifurcation parameter ¢ (maximum grazing rate)
varying in the range 0.1 — 1. Other parameters are ¢ = 0.8, N, = 5, I = 4. The shaded region mark the
pre-transition time series used for training the EWSNet.

o Model [8]
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Fig. 9: Stochastic time series embedded over bifurcation diagram:One parameter bifurcation diagram
for model [8] for the bifurcation parameter K (carrying capacity of resource) varying in the range 1 — 4.
Other parameters are » = 0.5, a = 0.4, b = 0.6, el = 0.6, d1 = 0.15. The shaded region mark the
pre-transition time series used for training the EWSNet
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Fig. 10: Stochastic time series embedded over bifurcation diagram: One parameter bifurcation diagram
for model [9] for K = 1.9 and K = 3.9 respectively for the bifurcation parameter ¢ (maximum grazing rate)
varying in the range 1 — 3. Other parameters are » = 1, b = 1. The shaded region mark the pre-transition
time series used for training the EWSNet.

Function for stochastic time series generation

src.

generate_data.modell (n_max, ¢, c_max, r, b, M, corr)
Generate multiple stochastic time series by solving the following differential equation using the Euler
Maruyama method:

N N N2
G=rN(1- %)~ @i

The values of sigma and k are varied within a range in order to add variability across time series to
generate time series with increased variablility.

Change the value of corr to generate time series when system is perturbed with colored noise of
different amplitude.

Parameters
* k — carrying capacity
* r — maximum growth rate
* ¢ — maximum grazing rate
* b — half saturation constant
* M- Number of time series to be generated for the given set of parameter values
* n_max — number of timesteps
* corr — Correlation time

¢ x0 — initial condition.

Note: Modify the stochastic differential equation to generate time series data from other models
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CHAPTER
FIVE

INFERENCE & FINETUNING USING PRETRAINED EWSNET

class src.inference.ewsnet .EWSNet (ensemble=1, weight_dir=None, prefix=", suf-
fix="h5")
This is a wrapper class to load pretrained EWSNet models and perform inference on custom data
points. To instanatiate this inference wrapper, you need to have pretrained weights stored in a local
directory. Supports ensembling multiple models for increased reliability and robustness.

Initializing the EWSNet wrapper.
Parameters

* ensemble (int, optional) — A variable indicating the no. of models to
ensemble and average predictions over.

* weight_dir (str, optional) — Path to the directory to load the weights
from.

* prefix (str, optional) - Prefix for the weight filenames
*» suffix (str, optional)— Suffix for the weight filenames
Attributes

* model A list of size ensemble holding the corresponding models, that are instances of type
model class:tf-keras.Model

Note: Note that the model weights should be saved as $_PREFIX_$i$_SUFFIX_ where i corresponds
to the index of the model in the ensemble.

Note: Once loading of the weights is successfull, use the predict() function to test custom time series
data using EWSNet.

build model ()
Function to define and build the neural network architecture for EWSNet

finetune (X, y, freeze_feature_extractor=True, learning_rate=5e-05, batch_size=512,

tune_epochs=5)
Function to finetune EWSNet on a custom dataset. By default finetunes all models in the ensem-

ble based on the given data and set of parameters.

11
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Parameters

* X(np.array, required)- The data points (univariate timeseries) to fine-
tune EWSNet on. Dimension - (N x D) or (N x 1 x D) where N denotes the no.
of samples and D denotes the no. of time steps.

* vy (np.array, required) — The target labels corresponding to the data
points (X). Dimension - (N, ) or (N x 1) where N denotes the no. of samples.

* freeze_feature_extractor (bool, optional) — A boolean flag
that determines the part of the network to be finetuned. When set to False. the
entire network is finetuned. When set to True, only the fully connected layers
are finetuned and the feature extraction blocks are frozen.

* learning_rate (float, optional) — The learning rate for finetuning
the models.

* batch_size (int, optional)- The batch size for finetuning the models.

* tune_epochs (int, optional)— The no. of epochs for finetuning the
models.

load_model (weight_dir, prefix, suffix)
Function to load the model from the weights present in the given directory

Parameters
* weight_dir (str,)— Path to the directory to load the weights from.
* prefix (str,)— Prefix for the weight filenames
* suffix (str,)— Suffix for the weight filenames

predict (x)
Function to make predictions using EWSNet.

Parameters x (I dimensional np.array or list , required)-— The
datapoint (univariate timeseries) to test for future transitions

Returns A tuple consisting of the predicted label and the predictoin probability for
each class.

12



CHAPTER
SIX

DATA LOADING & UTILS

src.utils.generic_utils.load_dataset_at (index, normalize_timeseries=Fulse,
verbose=True, is_timeseries=True) ->
(<built-in function array>, <built-in

function array>)
Loads a Univaraite Dataset indexed by utils.constants. The dataset is loaded as a pandas DataFrame

and preprocessed to replace missing values with zero.

Note: The dataset should be such that the first column corresponds to the target class label. i.e a
dataset consisting of N time series of length T would be a dataframe of dimension Nx(T+1) where the
first column corresponds to the class labels.

Parameters
* index - Integer index, set inside utils.constants that refers to the dataset.

* normalize_timeseries — Bool/ Integer. Determines whether to normalize
the timeseries. If False, does not normalize the time series. If True / int not equal
to 2, performs standard sample-wise z-normalization. If 2: Performs full dataset
z-normalization.

* verbose — Whether to describe the dataset being loaded.

Returns A tuple of shape (X_train, y_train, X_test, y_test, is_timeseries). For legacy

reasons, is_timeseries is always True.
src.utils.generic_utils.plot_roc (y_test, y_score, figname='"none', n_classes=3)
Plots the ROC Curve given the target and the prediction probabilities

Parameters
* y_test — The target class labels
* y_score — The models output prediction probabilities
» figname — Name of the figure for saving.

* n_classes — Number of classes.

13



CHAPTER
SEVEN

MODEL TRAINING AND EVALUATION

src.model_training.exp_utils.train_model (model: tensor-
flow.python.keras.engine.training.Model,
dataset_id, dataset_prefix,
epochs=50, batch_size=128,
val_subset=5000, cutoff=None,
normalize_timeseries=Fualse,
learning_rate=1e-05, predic-
_ ) ) ) tion=False)
Trains a provided Model, given a dataset id.
Parameters
¢ model — A Keras Model.
* dataset_id - Integer id representing the dataset index containd in

utils/constants.py.

dataset_prefix — Name of the dataset. Used for weight saving.
epochs — Number of epochs to train.

batch_size - Size of each batch for training.

val_subset — Optional integer id to subset the test set. To be used if the test
set evaluation time significantly surpasses training time per epoch.

cutoff — Optional integer which slices of the first cufoff timesteps from the
input signal.

normalize timeseries — Bool/ Integer. Determines whether to normalize
the timeseries. If False, does not normalize the time series. If True / int not equal
to 2, performs standard sample-wise z-normalization. If 2: Performs full dataset
z-normalization.

learning_rate — Initial learning rate.

Returns The trained model.

14
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src.model_training.exp_utils.evaluate_model (model: tensor-

flow.python.keras.engine.training.Model,
dataset_id, dataset_prefix,
batch_size=128,
test_data_subset=None,

cutoff=None, normal-
ize_timeseries=Fualse, er-
ror_analysis=False)

Evaluates a given Keras Model on the provided dataset.

Parameters

model — A Keras Model.

dataset_id - Integer id representing the dataset index containd in
utils/constants.py.

dataset_prefix — Name of the dataset. Used for weight saving.
batch_size — Size of each batch for evaluation.

test_data_subset — Optional integer id to subset the test set. To be used if
the test set evaluation time is significantly.

cutoff — Optional integer which slices of the first cutoff timesteps from the
input signal.

normalize timeseries — Bool/ Integer. Determines whether to normalize
the timeseries. If False, does not normalize the time series. If True / int not equal
to 2, performs standard sample-wise z-normalization. If 2: Performs full dataset
z-normalization.

Returns The test set accuracy of the model.
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INDICES AND TABLES

* genindex
* modindex

e search
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