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CHAPTER

ONE

INTRODUCTION

The transition from one steady-state to another alternative steady-state occurs in many complex systems,
such as financial markets, human societies, climate systems, and various other domains [1]. Transitions
may be abrupt and irreversible (i.e., catastrophic) or smooth and reversible (i.e., non-catastrophic), and can
occur due to gradual external forcing or random fluctuations in the system. In such scenarios, on crossing
a threshold (known as a tipping or bifurcation point), structural changes occur in the underlying system.
This is often termed a critical transition, prior to which the system’s return to an equilibrium slows down
- a phenomenon known as critical slowing down (CSD) [1]-[2]. The phenomenon of CSD is related to
the fact that the real part of the dominant eigenvalue of the system goes to zero at the bifurcation point.
In all such cases, where the dominant eigenvalue approaches zero close to the tipping point irrespective
of catastrophic or non-catastrophic transitions, the phenomenon of CSD persists, and there exist statistical
indicators that forewarn the vicinity of a tipping point [3]-[5]. Understanding the causes of sudden transitions
and forecasting them using statistical indicators have recently emerged as an important area of research due
to the management implications of preventing catastrophes in natural systems.

The traditional approach of forecasting critical transitions relies on CSD based indicators such as variance,
autocorrelation, and skewness showing an increasing trend before a transition. In this work, we take a differ-
ent direction and propose using machine learning techniques to anticipate transitions in complex dynamical
systems.
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CHAPTER

TWO

MACHINE LEARNING

Maintaining a level of abstraction, human intelligence, and decision-making can be understood as analogies
to mathematical functions. The inference that we make is essentially a function that processes a set of input
sensory signals, mapping it to some meaningful target domain. For example, when one infers "that is an
apple," it can be understood as a function that maps visual sensory signals to a known space of objects.
What constitutes knowledge and intelligence then is learning such functions, and human beings learn from
experience.

On similar lines, one way to enable machines to make inferences is to model the task using a parameterized
function that maps data in some input space to the desired target space. Machine learning then refers to
finding the optimal parameters for the function that best explains the data for the task at hand. Utilizing
samples of data in the input and target spaces, one can learn the function that maps the input domain to
the target domain [6]. This enables performing inference on a new/unseen data point, popularly known as
supervised learning, and constitutes the base for the functioning of EWSNet.

Deep Learning: Deep neural networks are essentially parameterized functions, proven to be universal func-
tion approximators [7]. Efficiently learning from data using classical machine learning models often required
handcrafting efficient feature representations for the data. The advent of convolutional neural networks en-
abled stacking multiple neural network layers and going deep to automatically extract features important for
learning from raw input data.

In their original form, neural networks were built to process I.I.D. data samples in fixed dimensional spaces.
On the contrary, most real-life data, such as time-series, text, audio, video, etc., are sequential and of variable
length. To process such sequential data and capture the inherent dependence that is present, novel neural
network architectures have been proposed, the most popular among them being recurrent neural networks
(RNN). RNNs process sequential data in an iterative manner, keeping a memory of data at the previous
time steps. However, capturing long-term dependencies is difficult with RNNs. An LSTM is a sophisticated
RNN architecture that addresses this issue by enabling the addition and deletion of information to a common
memory propagated across time steps.
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CHAPTER

THREE

EWSNET

EWSNet is a deep neural network, a parameterized function that employs a LSTM and a fully convoluted
network. The LSTM captures long-term dependencies in the sequential time series data and the fully con-
volutional sub-module helps automatically extract complex nonlinearities from the data, requisite to learn
the characteristics indicative of a future transition.

EWSNet can classify catastrophic, non-catastrophic, and no transitions in raw time series data learning
fundamental properties that characterize transitions and critical slowing down, which helps it distinguish
a no transition from the other two variants. EWSNet makes none but one presumption that the test data
must belong to a similar distribution as training data. By a similar distribution, it is meant that test data
have critical behavior (bifurcations) similar to underlying bifurcations of time series data that are deployed
for training. The present EWSNet is not specific to models on which it is trained but critical behavior
specific. There is always a choice to update and retrain EWSNet to cover an exhaustive space of such
critical behaviors under each transition label and increase its prediction’s robustness.
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Fig. 1: The EWSNet Architecture.
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CHAPTER

FOUR

DATA GENERATION

We generate stochastic time series that serve as training data pertaining to the three labels (catastrophic, non-
catastrophic, and no transition). Time series are obtained by simulating nine well-studied models that depict
the above transitions in diverse systems, such as ecological, climatic, and systems biology. We consider
data prior to tipping to train the EWSNet. We train EWSNet with various non-linear models for variance in
the training set that adds to the robustness of the EWSNet. In the process, we first obtain the deterministic
tipping by plotting the bifurcation diagram in XPPAUT [8]. We also vary parameters apart from the control
(bifurcation parameter) wherever possible. It is to be noted that an extra parameter is varied in models [1],
[3], [6], [7], and [9] (see SI, Table S1) only after reconfirming that a particular bifurcation persists within
the range. To confirm this, we plot a two-parameter bifurcation diagram using XPPAUT. This aids in more
variability across time series.

Further, we solve the system using the Euler-Maruyama method with integration step size 𝑑𝑡 = 0.01. We
choose different values of another parameter from a range, other than the control parameter as in mod-
els [1],[3],[6],[7], and [9]. In such cases, the respective parameter value is picked up randomly for each
simulation within the mentioned range which remains fixed for all time steps and varies only across time
series.

We generate 0.1 million time series, each for Dataset-W and Dataset-C. However, in Dataset-C, we train
with different time series by simulating models for 𝜅 = −0.2 and 0.2. At the same time, the correspond-
ing test data contain time series generated from the underlying models for high amplitude autocorrelation
coefficient values [𝜅 = −0.64, 0.64,−0.8, 0.8]. Time series for both training and testing are generated in
equal proportions for all three labels. Model [1]-[5] correspond to the label critical (catastrophic) transition,
[6]-[8] replicate smooth (non-catastrophic) transition, and model 9 represent no-transition. All the chosen
parameter values for model [1]-[9] are taken from published literature cited in the main text and supplemen-
tary information. Variation in parameters to add variability to the datasets is done only after plotting both
one-parameter and two-parameter bifurcations.

Here, we explain in detail the data generation process for model [1]. The deterministic dynamics of model
[1] can be represented by the below differential equation:

𝑑𝑁

𝑑𝑡
= 𝑟𝑁(1− 𝑁

𝐾
)− 𝑐𝑁2

𝑏2 +𝑁2
,

where 𝑟 = 1 represents the maximum growth rate, 𝐾 ∈ [8, 10] is the carrying capacity, and 𝑏 = 1 is
the half saturation constant. 𝑐 is the bifurcation parameter which is varied in the range 1 − 3 (see Fig. 1).
Time series generated by simulating model [1] correspond to the label catastrophic transition. In generating
the stochastic time series, the parameters 𝑟, 𝑏 are fixed, while 𝐾 takes a uniform random number in the
range [8,10] in order to add variability across time series. This is done by confirming that the saddle-node
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bifurcation persists with the help of a two-parameter bifurcation in the above range for 𝑐 for the given 𝐾
value (Fig. 2). The deterministic bifurcation point is 𝑐 = 2.13 for 𝐾 = 8, and 𝑐 = 2.6 for 𝐾 = 10. We
generate time series data by simulating for 400 time steps prior to a tipping. Suppose we generate 𝑛 time
series by simulating model [1] for 400 time steps as 𝑐 varies in the range 1−1.8 with time, n independent 𝐾
values are picked up from 𝑈 [8, 10] one for each simulation with all other parameters fixed. This also allows
for variance in dataset and reduce bias if any, as pre-transition time series that are used to train the EWSNet
are at varying distances from the tipping.

Bifurcation embedded time series for all the other models are plotted (Figs. 3-10). The red and green curves
in each figure represent the stable and unstable states of a deterministic system, respectively. The stochastic
trajectory corresponding to each system is presented in blue.
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Fig. 1: Stochastic time series embedded over bifurcation diagram for Model [1]: In (a) 𝐾 = 8, and (b)
𝐾 = 10, respectively. The bifurcation parameter 𝑐 (maximum grazing rate) is varying in the range 1 − 3.
Other parameter values are 𝑟 = 1 and 𝑏 = 1. The shaded region marks the pre-transition time series used
for training EWSNet.
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Fig. 2: Phase diagram of the overharvesting model in (𝐾, 𝑐)- plane: The shaded region represents bistability
and rest is monostable. The curve separating the monostable region from the bistable region is a saddle-node
bifurcation curve. Other parameter values are 𝑟 = 1 and 𝑏 = 1.
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Fig. 3: Stochastic time series embedded over bifurcation diagram for Model [2]: The bifurcation parameter
c (maximum grazing rate) is varying in the range 1 − 5. Other parameter value is 𝐾 = 11. The shaded
region marks the pre-transition time series used for training EWSNet.
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Fig. 4: Stochastic time series embedded over bifurcation diagram for Model [3]: In (a) 𝜇𝐽 = 0.05, and
(b) 𝜇𝐽 = 0.1, respectively. The bifurcation parameter 𝜇𝑃 (predator mortality rate) is varying in the range
0.35 − 0.65. Other parameter values are 𝑏 = 1, 𝑐 = 1, 𝜇𝐴 = 0.01. The shaded region marks the pre-
transition time series used for training EWSNet.
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Fig. 5: Stochastic time series embedded over bifurcation diagram for Model [4]: The bifurcation parameter
𝑎 (maximum transcription rate) is varying in the range 0−3. Other parameter is 𝑟 = 0.1. The shaded region
marks the pre-transition time series used for training EWSNet.
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Fig. 6: Stochastic time series embedded over bifurcation diagram for Model [5]: The bifurcation parameter
𝜇 (relative intensity of solar radiation) is varying in the range 0.5− 2. Other parameter values are 𝑎 = 2.81,
𝑏 = 0.009, 𝑐 = 1.5 × 108, 𝜖 = 0.69, 𝐼0 = 0.03, 𝜎 = 1.251 × 10−12. The density T represent temperature
in Kelvin. The shaded region marks the pre-transition time series used for training EWSNet.
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Fig. 7: Stochastic time series embedded over bifurcation diagram for Model [6]: In (a) 𝐾 = 10 and (b)
𝐾 = 15, respectively. The bifurcation parameter c (maximum grazing rate) is varying in the range 0 − 2.
Other parameter value is 𝑟 = 1. The shaded region marks the pre-transition time series used for training
EWSNet.
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Fig. 8: Stochastic time series embedded over bifurcation diagram for Model [7]: In (a) 𝐾 = 8 and (b)
𝐾 = 10, respectively. The bifurcation parameter 𝑟 (maximum growth rate) is varying in the range 0.1− 1.
Other parameter values are 𝑐 = 0.8, 𝑁𝑐 = 5, 𝐼 = 4. The shaded region marks the pre-transition time series
used for training EWSNet.
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Fig. 9: Stochastic time series embedded over bifurcation diagram for Model [8]: The bifurcation parameter
𝐾 (carrying capacity of resource) is varying in the range 1−4. Other parameter values are 𝑟 = 0.5, 𝑎 = 0.4,
𝑏 = 0.6, 𝑒1 = 0.6, and 𝑑1 = 0.15. The shaded region marks the pre-transition time series used for training
EWSNet
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Model [9] (K=1.9)
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Fig. 10: Stochastic time series embedded over deterministic steady states for Model [9]: In (a) 𝐾 = 1.9 and
(b) 𝐾 = 3.9, respectively. The control parameter c (maximum grazing rate) is varying in the range 1 − 3.
Other parameter values are 𝑟 = 1, and 𝑏 = 1. The shaded region marks the time series used for training
EWSNet.

Function for stochastic time series generation

src.generate_data.model1(n_max, c, c_max, r, b, M, corr)
Generate multiple stochastic time series by solving the following differential equation using the Euler
Maruyama method:
𝑑𝑁
𝑑𝑡 = 𝑟𝑁(1− 𝑁

𝐾 )− 𝑐𝑁2

𝑏2+𝑁2 .

The values of sigma and k are varied within a range in order to add variability across time series to
generate time series with increased variablility.

Change the value of corr to generate time series when system is perturbed with colored noise of
different amplitude.

Parameters

• K – carrying capacity

• r – maximum growth rate

• c – maximum grazing rate

• b – half saturation constant

• M – Number of time series to be generated for the given set of parameter values

• n_max – number of timesteps

• corr – Correlation time

• x0 – initial condition.

Note: Modify the stochastic differential equation to generate time series data from other models
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CHAPTER

FIVE

INFERENCE & FINETUNING USING PRETRAINED EWSNET

class src.inference.ewsnet.EWSNet(ensemble=1, weight_dir=None, prefix='', suf-
fix='.h5')

This is a wrapper class to load pretrained EWSNet models and perform inference on custom data
points. To instanatiate this inference wrapper, you need to have pretrained weights stored in a local
directory. Supports ensembling multiple models for increased reliability and robustness.

Initializing the EWSNet wrapper.

Parameters

• ensemble (int, optional) – A variable indicating the no. of models to
ensemble and average predictions over.

• weight_dir (str, optional) – Path to the directory to load the weights
from.

• prefix (str, optional) – Prefix for the weight filenames

• suffix (str, optional) – Suffix for the weight filenames

Attributes

• model A list of size ensemble holding the corresponding models, that are instances of type
model class:tf.keras.Model

Note: Note that the model weights should be saved as $_PREFIX_$i$_SUFFIX_ where i corresponds
to the index of the model in the ensemble.

Note: Once loading of the weights is successfull, use the predict() function to test custom time series
data using EWSNet.

build_model()
Function to define and build the neural network architecture for EWSNet

finetune(X, y, freeze_feature_extractor=True, learning_rate=5e-05, batch_size=512,
tune_epochs=5)

Function to finetune EWSNet on a custom dataset. By default finetunes all models in the ensem-
ble based on the given data and set of parameters.
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Parameters

• X (np.array, required) – The data points (univariate timeseries) to fine-
tune EWSNet on. Dimension - (N x D) or (N x 1 x D) where N denotes the no.
of samples and D denotes the no. of time steps.

• y (np.array, required) – The target labels corresponding to the data
points (X). Dimension - (N, ) or (N x 1) where N denotes the no. of samples.

• freeze_feature_extractor (bool, optional) – A boolean flag
that determines the part of the network to be finetuned. When set to False. the
entire network is finetuned. When set to True, only the fully connected layers
are finetuned and the feature extraction blocks are frozen.

• learning_rate (float, optional) – The learning rate for finetuning
the models.

• batch_size (int, optional) – The batch size for finetuning the models.

• tune_epochs (int, optional) – The no. of epochs for finetuning the
models.

load_model(weight_dir, prefix, suffix)
Function to load the model from the weights present in the given directory

Parameters

• weight_dir (str,) – Path to the directory to load the weights from.

• prefix (str,) – Prefix for the weight filenames

• suffix (str,) – Suffix for the weight filenames

predict(x)
Function to make predictions using EWSNet.

Parameters x (1 dimensional np.array or list , required) – The
datapoint (univariate timeseries) to test for future transitions

Returns A tuple consisting of the predicted label and the predictoin probability for
each class.
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CHAPTER

SIX

DATA LOADING & UTILS

src.utils.generic_utils.load_dataset_at(index, normalize_timeseries=False,
verbose=True, is_timeseries=True) ->
(<built-in function array>, <built-in
function array>)

Loads a Univaraite Dataset indexed by utils.constants. The dataset is loaded as a pandas DataFrame
and preprocessed to replace missing values with zero.

Note: The dataset should be such that the first column corresponds to the target class label. i.e a
dataset consisting of N time series of length T would be a dataframe of dimension Nx(T+1) where the
first column corresponds to the class labels.

Parameters

• index – Integer index, set inside utils.constants that refers to the dataset.

• normalize_timeseries – Bool / Integer. Determines whether to normalize
the timeseries. If False, does not normalize the time series. If True / int not equal
to 2, performs standard sample-wise z-normalization. If 2: Performs full dataset
z-normalization.

• verbose – Whether to describe the dataset being loaded.

Returns A tuple of shape (X_train, y_train, X_test, y_test, is_timeseries). For legacy
reasons, is_timeseries is always True.

src.utils.generic_utils.plot_roc(y_test, y_score, figname='none', n_classes=3)
Plots the ROC Curve given the target and the prediction probabilities

Parameters

• y_test – The target class labels

• y_score – The models output prediction probabilities

• figname – Name of the figure for saving.

• n_classes – Number of classes.
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CHAPTER

SEVEN

MODEL TRAINING AND EVALUATION

src.model_training.exp_utils.train_model(model: tensor-
flow.python.keras.engine.training.Model,
dataset_id, dataset_prefix,
epochs=50, batch_size=128,
val_subset=5000, cutoff=None,
normalize_timeseries=False,
learning_rate=1e-05, predic-
tion=False)

Trains a provided Model, given a dataset id.

Parameters

• model – A Keras Model.

• dataset_id – Integer id representing the dataset index containd in
utils/constants.py.

• dataset_prefix – Name of the dataset. Used for weight saving.

• epochs – Number of epochs to train.

• batch_size – Size of each batch for training.

• val_subset – Optional integer id to subset the test set. To be used if the test
set evaluation time significantly surpasses training time per epoch.

• cutoff – Optional integer which slices of the first cutoff timesteps from the
input signal.

• normalize_timeseries – Bool / Integer. Determines whether to normalize
the timeseries. If False, does not normalize the time series. If True / int not equal
to 2, performs standard sample-wise z-normalization. If 2: Performs full dataset
z-normalization.

• learning_rate – Initial learning rate.

Returns The trained model.
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src.model_training.exp_utils.evaluate_model(model: tensor-
flow.python.keras.engine.training.Model,
dataset_id, dataset_prefix,
batch_size=128,
test_data_subset=None,
cutoff=None, normal-
ize_timeseries=False, er-
ror_analysis=False)

Evaluates a given Keras Model on the provided dataset.

Parameters

• model – A Keras Model.

• dataset_id – Integer id representing the dataset index containd in
utils/constants.py.

• dataset_prefix – Name of the dataset. Used for weight saving.

• batch_size – Size of each batch for evaluation.

• test_data_subset – Optional integer id to subset the test set. To be used if
the test set evaluation time is significantly.

• cutoff – Optional integer which slices of the first cutoff timesteps from the
input signal.

• normalize_timeseries – Bool / Integer. Determines whether to normalize
the timeseries. If False, does not normalize the time series. If True / int not equal
to 2, performs standard sample-wise z-normalization. If 2: Performs full dataset
z-normalization.

Returns The test set accuracy of the model.
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INDICES AND TABLES

• genindex

• modindex

• search
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